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1
SYSTEMS AND METHODS FOR USING
MARKOYV DISTRIBUTION CODES IN DATA
STORAGE SYSTEMS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This disclosure claims the benefit under 35 U.S.C. §119(e)
of' U.S. Provisional Application No. 61/943,964, filed on Feb.
24, 2014, and of U.S. Provisional Application No. 61/948,
349, filed on Mar. 5, 2014, both of which are hereby incor-
porated by reference herein in their respective entireties.

FIELD OF USE

The present disclosure relates generally to error correcting
systems and methods and, more particularly, to the design,
optimization, and implementation of Markov distribution
codes.

BACKGROUND OF THE DISCLOSURE

The background description provided herein is for the pur-
pose of generally presenting the context of the disclosure.
Work of the inventors hereof, to the extent the work is
described in this background section, as well as aspects of the
description that may not otherwise qualify as prior art at the
time of filing, are neither expressly nor impliedly admitted as
prior art against the present disclosure.

In some systems, the performance achieved by error cor-
recting codes may depend on the actual bit sequences or bit
patterns of the codeword. For example, the error correcting
performance for a first bit pattern, such as “010101,” may be
statistically worse than the error correcting performance for a
second bit pattern, such as “000000” or “111111.” In data
storage systems, for instance, error correcting performance
may decrease with the number of transitions (e.g., transitions
from logical one to logical zero or vice versa) due to proper-
ties of the magnetic recording medium that make such tran-
sitions more prone to errors. In other words, in these systems,
bit patterns with a large number of transitions may be more
prone to errors than sequences with a smaller number of
transitions.

In systems that exhibit such properties, error correction
performance can be improved by constructing constraint
codes and error correction codes (ECCs) that prevent bit
patterns with a large number of transitions from occurring in
the encoded data. For ease of exposition, we will sometimes
refer to constraint codes and/or error correction codes as
codes in the remainder of the descriptions. A specific example
of constraint codes are Maximum Transition Run (MTR)
codes, which are designed to completely eliminate specific
transition patterns. While the avoidance of these specific pat-
terns helps to improve the error correction performance, the
use of such codes reduces the code rate, because the excluded
patterns are no longer available for encoding. From an overall
performance perspective, MTR codes may therefore suffer a
performance loss in some scenarios.

SUMMARY OF THE DISCLOSURE

In accordance with an embodiment of the present disclo-
sure, a method is provided for encoding information using a
code specified by a target Markov distribution. The method
includes selecting a set of parameters comprising a block
length, a plurality of weight metrics, and a threshold, and
estimating a Markov distribution associated with the selected
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2

set of parameters from a plurality of data blocks defined by
the selected parameters. The method further includes modi-
fying the set of parameters based on the estimated Markov
distribution, and encoding the information using the modified
set of parameters.

In some implementations, the method includes determin-
ing the set of parameters iteratively by repeatedly estimating
a Markov distribution associated with the modified set of
parameters and modifying the set of parameters based on the
estimated Markov distribution.

In some implementations, encoding the information using
the modified set of parameters includes generating a trellis
having a plurality of states based on the modified set of
parameters, and encoding the information using an enumera-
tive code determined from the trellis.

In some implementations, modifying the set of parameters
based on the estimated Markov distribution includes modify-
ing the set of parameters to approximate the target Markov
distribution.

In some implementations, the target Markov distribution is
specified by a plurality of probabilities, and at least one of the
plurality of probabilities corresponds to a hard constraint. The
method further includes generating the plurality of data
blocks such that each of the plurality of data blocks satisfies
the hard constraint.

In accordance with an embodiment of the present disclo-
sure, a system is provided for encoding information using a
code specified by a target Markov distribution. The system
includes storage circuitry configured to store a set of param-
eters comprising a block length, a plurality of weight metrics,
and a threshold. The system further includes control circuitry
configured to estimate a Markov distribution associated with
the selected set of parameters from a plurality of data blocks
defined by the selected parameters, and modify the set of
parameters based on the estimated Markov distribution. The
control circuitry is further configured to encode the informa-
tion using the modified set of parameters.

In some implementations, the control circuitry is further
configured to determine the set of parameters iteratively by
repeatedly estimating a Markov distribution associated with
the modified set of parameters and modifying the set of
parameters based on the estimated Markov distribution.

In some implementations, the control circuitry encodes the
information using the modified set of parameters by being
further configured to generate a trellis having a plurality of
states based on the modified set of parameters, and encode the
information using an enumerative code determined from the
trellis.

In some implementations, modifying the set of parameters
based on the estimated Markov distribution includes modify-
ing the set of parameters to approximate the target Markov
distribution.

In some implementations, the target Markov distribution is
specified by a plurality of probabilities, at least one of the
plurality of probabilities corresponds to ahard constraint, and
the control circuitry is further configured to generate the
plurality of data blocks such that each of the plurality of data
blocks satisfies the hard constraint.

In accordance with an embodiment of the present disclo-
sure, a method is provided for determining a Markov distri-
bution code for use in a decoding system. The method
includes modifying, using control circuitry, at least one prob-
ability value of a first Markov distribution to obtain a second
Markov distribution, and computing a performance metric for
a code specified by the second Markov distribution based on
properties of the decoding system. The method further
includes comparing the performance metric of'the code speci-
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fied by the second Markov distribution with a performance
metric ofa code specified by the first Markov distribution, and
replacing the first Markov distribution with the second
Markov distribution when the performance metric of the code
specified by the second Markov distribution exceeds the per-
formance metric of the code specified by the first Markov
distribution.

In some implementations, the method further includes
repeating the modifying, the computing, the comparing, and
the replacing until a convergence criterion is satisfied.

In some implementations, the performance metric corre-
sponds to one or more values of an extrinsic information
transfer function.

In some implementations, the performance metric is asso-
ciated with a shape of an extrinsic information transfer func-
tion.

In some implementations, the first Markov distribution is
associated with a code rate, and modifying the at least one
probability value includes modifying the at least one prob-
ability value such that a code rate of the second Markov
distribution remains equal to the code rate associated with the
first Markov distribution.

BRIEF DESCRIPTION OF THE DRAWINGS

Further features of the disclosure, its nature and various
advantages will be apparent upon consideration of the follow-
ing detailed description, taken in conjunction with the accom-
panying drawings, in which like reference characters refer to
like parts throughout, and in which:

FIG. 1 shows an illustrative communication or data storage
system that utilizes error correction codes to achieve reliable
communication or storage in accordance with some embodi-
ments of the present disclosure;

FIG. 2 shows an illustrative block diagram of an iterative
decoding system, in accordance with some embodiments of
the present disclosure;

FIG. 3 shows an illustrative extrinsic information transfer
(EXIT) chart for a channel detector and an ECC decoder, in
accordance with some embodiments of the present disclo-
sure;

FIG. 4 shows an illustrative EXIT chart of a channel detec-
tor that has been fitted to the transfer function of an ECC
decoder, in accordance with some embodiments of the
present disclosure;

FIG. 5 shows a process for determining a Markov distribu-
tion based on properties of a decoding system, in accordance
with some embodiments of the present disclosure;

FIG. 6 shows a process for determining an appropriate
memory length of a Markov distribution, in accordance with
some embodiments of the present disclosure;

FIG. 7 shows an illustrative EXIT chart associated with
respective iterations of a Markov distribution code, in accor-
dance with some embodiments of the present disclosure;

FIG. 8 shows a bit sequence to illustrate the definition of a
weighted number of ones, in accordance with some embodi-
ments of the present disclosure;

FIG. 9 illustrates a process for choosing encoding param-
eters based on a target Markov distribution, in accordance
with some embodiments of the present disclosure;

FIG. 10 shows transition diagrams for a Markov distribu-
tion code, in accordance with some embodiments of the
present disclosure;

FIG. 11 shows a trellis for a Markov distribution code, in
accordance with some embodiments of the present disclo-
sure;
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FIG. 12 shows a simplified transition diagram obtained by
merging states with similar properties, in accordance with
some embodiments of the present disclosure; and

FIG. 13 shows a block diagram of a computing device, for
performing any of the processes described herein, in accor-
dance with some embodiment of the present disclosure.

DETAILED DESCRIPTION

FIG. 1 shows an illustrative communication or data storage
system 100 that utilizes error correcting codes, such as LDPC
codes, to achieve reliable communication or storage, in accor-
dance with some embodiments ofthe present disclosure. User
information 102 is encoded through iterative encoder 104.
User information 102 may be referred to as the message
information or a message vector, and may be grouped into
units of k symbols. Each symbol may be viewed as an element
of a Galois Field (GF) with a certain order. For example, a
Galois Field with order two may correspond to binary sym-
bols. The result of encoding user information 102 is codeword
106. Codeword 106 may be of a predetermined length.

In some embodiments, codeword 106 is passed to a modu-
lator 108. Modulator 108 prepares codeword 106 for trans-
mission across channel 110. Modulator 108 may use phase-
shift keying, frequency-shift keying, quadrature amplitude
modulation, or any suitable modulation technique to modu-
late codeword 106 into one or more information carrying
signals. Channel 110 may represent media through which the
information carrying signals travel. For example, channel 110
may represent a wired or wireless medium in a communica-
tion system, or a storage medium in which the information-
carrying signals may be stored. The storage medium may be
an electronic (e.g., RAM, ROM), magnetic (e.g., a hard disk),
or optical (e.g., CD, DVD, or holographic) storage medium.

Due to interference from other signals or other types of
noise and phenomena, channel 110 may corrupt the wave-
form transmitted by modulator 108. Thus, the waveform
received by demodulator 112, i.e., received waveform 111,
may be different from the originally-transmitted signal wave-
form. Received waveform 111 may be demodulated with
demodulator 112. Demodulator 112 may demodulate
received waveform 111 with filters, multiplication by peri-
odic functions, or any suitable demodulation technique cor-
responding to the type of modulation used in modulator 108.
Theresult of demodulation is received vector 114, which may
contain errors due to channel corruption.

Received vector 114 corresponding to codeword 106 may
then be processed by iterative decoder 116. Iterative decoder
116 may be used to correct or detect errors in received vector
114. In some embodiments, iterative decoder 116 may
include a channel detector 115 and an ECC decoder 117.
Channel detector 115 may be implemented using a Soft-
Output Viterbi Algorithm (SOVA) detector. [terative decoder
116 may use an iterative message passing algorithm to correct
or detect errors in received vector 114 in order to output
decoded information 118.

A channel iteration refers to an iteration between a channel
detector and an ECC decoder (e.g., an LDPC decoder). For
example, a channel iteration may refer to repeated instances
of information passing between channel detector 115 and
ECC decoder 117. In contrast, an ECC iteration may refer to
iterations within the ECC decoder (e.g., a flooding decoder or
layered decoder), for example, repetition of calculations
within ECC decoder 117. The ECC decoder generally pro-
cesses symbols of received vector 114 multiple times within
a channel iteration. For example, the ECC decoder may pro-
cess all symbols of the codeword five or more times within a
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channel iteration. In contrast, the channel detector may typi-
cally process each symbol of received codeword 114 only
once during a channel iteration.

FIG. 2 shows a block diagram of an iterative decoding
system 200 that includes a channel detector 214 and an ECC
decoder 222, in accordance with some embodiments of the
present disclosure. Iterative decoder 200 may be a more
detailed representation of iterative decoder 116 of FIG. 1 and
may include, in addition to channel detector 214 and ECC
decoder 222, an interleaver 216, a deinterlever 218, and a
frontend 212. Interleaver 216 and deinterleaver 218 may be
optional. As is described in relation to FIG. 1, channel detec-
tor 214 and ECC decoder 222 may concurrently process
received vector 114 in multiple iterations. Channel detector
214 and ECC decoder 222 may exchange extrinsic informa-
tion with one another in order to improve decoding perfor-
mance between iterations.

In some embodiments, the extrinsic information of channel
detector 214 may be defined as the additional information
provided by the processing of channel detector 202 relative to
the information that was provided as input to channel detector
214. Channel detector 214 may process the received vector
based on a set of a priori probabilities, wherein each element
of'the set may correspond to a specific symbol of the received
vector (and thus to a specific symbol of the transmitted code-
word). This a priori information may be expressed in the form
of log-likelihood ratios (LLRs), i.e., each symbol in the
received vector may correspond to a specific LLR value. The
processing performed by channel detector 214 results in
updated LLR values, which are also referred to as a posteriori
information. Similar to the a priori information, a posteriori
information may be expressed in the form of LLRs. Similar to
the channel detector 214, ECC decoder 222 takes a priori
information as input to obtain a posteriori information as
output.

It is important to note that the channel detector’s a priori
information may readily be obtained from the ECC decoder’s
a posteriori information. Likewise, the ECC decoder’s a
priori information may readily be obtained from the channel
detector’s a posteriori information. The correspondence is
defined by interleaver 216 and deinterleaver 218. Typically,
the parameters of the interleaver are known, and thus a priori
and a posteriori information may be converted in a straight-
forward fashion.

In some aspects, iterative encoder 104 and iterative
decoder 116 may use codes that are defined based on Markov
probabilities. A Markov probability may denote the probabil-
ity that a given bit position of received vector 114 is equal to
logical one, conditioned on a sequence of prior bit positions.
For example, the probability that a current bit a, is equal to
logical one may depend on the four previous bits, a,_,, a,_»,
a, 5, and a,_,. Using this notation, it is possible to formulate
constraints such that certain bit sequences are excluded from
occurring in the codeword. For example, the exclusion of
certain bit sequences in constrained codes may be expressed
mathematically by forcing certain Markov probabilities to be
equal to one (e.g., to make the corresponding transitions
events occur with certainty) while setting other Markov prob-
abilities to zero. For example, the occurrence of the bit
sequence “01010” may be prevented by imposing the follow-
ing constraint for Markov probability P on a code:

Pla=1la,_ya;_3a;_a,_=0101)=1.

In other words, similarto an M TR code, Markov probabilities
may be used to enforce “hard” constraints with respect to the
occurrence of specific bit sequences.
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In some aspects, Markov probabilities may also be used to
enforce “soft” constraints with respect to the occurrence of
certain bit sequences. Such constraints may by imposed by
selecting Markov probabilities that are strictly greater than
zero and strictly less than one.

By doing so, a Markov distribution (MD) code can be
constructed that controls the frequency with which certain bit
sequences occur. In other words, rather than eliminating bit
sequences entirely, the occurrence rate of certain bit
sequences may be controlled. As a result, of the “soft” rather
than “hard” constraints, the impact on the code rate may be
reduced, which may improve performance substantially.

Formally, an MD code may be defined through a set of
Markov probabilities. A specific Markov probability may be
specified for each possible bit sequence of length N, where N
corresponds to the Markov memory length. For example, if
N=4 is chosen as in the previous example, a Markov prob-
ability may be specified for each possible bit sequence of
length four.

Mathematically, this can be expressed as:

Plar=11a3_aar_ 3020, =0000)=pg
Plar=11a3_a0r_ 3020, =0001)=p,

Plar=1ay_a0r_ 30201 =1111)=poV_,

The entire set of probabilities p, is referred to as the Markov
distribution of the MD code. In some aspects, in order to
optimize performance, the distribution of Markov probabili-
ties may need to be carefully optimized to match the under-
lying channel/medium and/or the properties of the decoding
system, as is explained in detail below.

In addition to controlling the frequency of occurrence of
certain bit patterns, the code rate of an MD code may also be
linked to its Markov distribution. For example, for a memory
length N, the theoretical code rate for an MD code defined by
Markov probabilities p, may be given by

®

2NNy

r= Z Z /“‘iPilegsz‘_js

=0 j=0

where the probabilities , are stationary state probabilities and
P,; are transition probabilities uniquely defined based on the
Markov distribution. While the above information-theoretic
code rate may not be achievable by an actual implementation
of an MD code, it may be closely approached by designing
codes that closely approximate the underlying Markov distri-
bution. Implementation techniques that may be suitable to
design such codes are discussed in detail in relation to FIGS.
9-12.

Inpractice, it may be important to optimize the distribution
of'an MD code based on specifics of the underlying channel/
medium and/or specific properties of a decoding system. As
part of the optimization process, it may useful to keep the
memory length N of the MD code fixed while optimizing the
Markov probabilities. While the memory length N may be
subject to a separate optimization procedure, as will be dis-
cussed in relation to FIG. 6, keeping N constant has the
benefit of keeping the number of Markov probabilities fixed.
Otherwise, if N is allowed to change while the Markov prob-
abilities are being optimized, the number of Markov prob-
abilities will change at the same time as the values of the
Markov probabilities themselves. This may be undesirable in
practice and motivates determining N and p, separately. Simi-
larly, as part of the optimization procedure, the code rate R
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may be kept fixed, or it may be optimized together with the
Markov probabilities. Specifically, if the code rate is kept
fixed, the only objective of the optimization problem may be
to determine Markov probabilities. When the code rate is
flexible, the Markov probabilities may be selected “more
freely” as the optimization procedure may concurrently
change the code rate of the system such as to achieve
improved system performance.

An objective of the present disclosure is to describe an
optimization procedure that adapts to channel parameters and
properties of a given decoding system. Generally, the param-
eters and properties of the underlying channel and the decod-
ing system are represented by a mathematical model of the
physical phenomena that occur in an actual system or prod-
uct, in order to make these phenomena accessible to math-
ematical optimization techniques. The mathematical model
may include a complex approximation of noise and inter-
symbol interference, including possible inter-track interfer-
ence. The disclosed optimization procedure may be general
enough to be applied to any system that can be formulated as
described below.

In some embodiments, the mathematical model of the
decoding system may be based on quantifying the transfer of
extrinsic information. Extrinsic information corresponds to
the additional information obtained by channel detector 214
or ECC decoder 222 in an iteration of the decoding process. In
each iteration the processing improves the information state
about the received vector being decoded, and in this context,
the extrinsic information represents additional information
about the message that is obtained in addition to the previous
information state of a prior iteration. As part of iterative
decoding algorithms, extrinsic information is exchanged
between channel detector 214 and ECC decoder 222 to ensure
that only “new” information gained during an iteration, but
not previously-known information, is being exchanged.

In some implementations, other metrics may be used to
represent the information state at channel detector 214 and
ECC decoder 222. For example, signal-to-noise ratios (SNR),
signal-to-interference-plus-noise ratios (SINR), mutual
information, or any other suitable type of metric may be used.
In some aspects, mutual information may be viewed as a
measure of the mutual dependence of two random variables.
For example, if two random variables are statistically inde-
pendent, then knowledge of one of the random variables does
not provide any information about the other random variable.
The mutual information of these two variables is therefore
zero. In contrast, if the two variables can be derived deter-
ministically from one another (e.g., when the first random
variable is a deterministic function of the second random
variable), then the mutual information is large because all
information conveyed by one of the random variables is
shared with the other random variable.

FIG. 3 shows an illustrative extrinsic information transfer
(EXIT) chart 300 for a channel detector and an ECC decoder,
in accordance with some embodiments of the present disclo-
sure. EXIT chart 300 may include ECC decoder transfer
function 302 and channel detector transfer function 304. A
point on the curve of either transfer function 302 or 304 may
represent a certain amount of a posteriori information quan-
tified in terms of a mutual information metric. Using EXIT
chart 300, the extrinsic information gained in iterations of
iterative decoder 200 may be quantified as follows. The itera-
tive decoding process starts when a received vector has been
proceeded by frontend 212 and is being processed by channel
detector 214 for the first time. For the first iteration of the
channel detector, no a priori information is available, and the
processing of the received vector by channel detector 214
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yields a certain amount of a posteriori information I, (A),
where the letter “A” denotes the processing by Block A (i.e.,
numeral 210) in FIG. 2. As is discussed in relation to FIG. 2,
the output I, (A) of channel detector 214 serves as an input to
ECC decoder 222 and is denoted as I, (B). The letter “B”
denotes the processing by Block B (i.e., numeral 220 in FIG.
2). In EXIT chart 300, this a posteriori information may be
denoted by operating point 3064 on the y-axis of EXIT chart
300. Operating point 3064 may correspond to operating point
3065 on ECC decoder transfer function 302. The correspond-
ing a posteriori information I, (B) of the ECC decoder is
given by the x-axis of EXIT chart 300. In accordance with
FIG. 2, the a posteriori information output by ECC decoder
222 is equal to the a posteriori information I (A) thatis input
to channel detector 214 in the next iteration. Operating point
3065 may be used to determine a point at which the a poste-
riori information output by ECC decoder 222 intersects chan-
nel detector transfer function 304. This point may be denoted
as operating point 306¢. At this point, one full iteration of
iterative decoding system 200 may be complete, and from
operating point 306¢, operating points 3064 and 306e may be
determined. As shown by path 306, EXIT chart 300 visualizes
how iterations of iterative decoding system 200 improve the a
posteriori information available about the received vector and
contribute to the decoding of it.

In some aspects, EXIT chart 300 may assume that a single
parameter may be used to represent the evolution of a poste-
riori information and their associated probability distribu-
tions in channel detector 214 and ECC decoder 222. For
example, the parameter may correspond to the variance of a
Gaussian distribution for which the variance between the
distribution’s mean and variance is fixed. In some aspects,
even when the assumption that a single parameter captures
the probability distribution in its entirety, is not satisfied in a
strict mathematical sense, empirical data may show that the
assumption is a good approximation, especially when the
shape of the probability distributions does not change much
from one iteration to the next. Accordingly, even in such
systems, EXIT chart 300 may represent an attractive frame-
work for carrying out the optimization of Markov probabili-
ties.

In some embodiments, the MD code may be optimized by
adjusting the Markov probabilities such that the shape of
channel detector transfer function 304 allows for improved
convergence with respect to ECC decoder transfer function
302. As part of the optimization, the shape of ECC decoder
transfer function 302 may be fixed, while adjustments to the
Markov probabilities alter the shape of channel detector
transfer function 304. In some aspects, the optimization of the
shape of channel detector transfer function 304 may be per-
formed iteratively. Conceptually, in each iteration, the chan-
nel detector transfer function may be re-plotted to capture
adjustments made to some of the Markov probabilities. It
should be noted, however, that the plotting of channel detec-
tor transfer function 304 is not required when the optimiza-
tion is carried out automatically, e.g., as part of a curve fitting
process that is performed in accordance with the techniques
described below.

In some embodiments, it may be desirable that channel
detector transfer function 304 have two properties. First, it
may be desirable to increase the area under the channel detec-
tor transfer function, because it reflects an achievable decod-
ing accuracy in absolute terms. Second, channel detector
transfer function 304 should match the shape of ECC decoder
transfer function 302. The latter optimization objective is
important because, depending on the actual properties of
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iterative decoding system 200, the shapes of channel detector
transfer function 304 and ECC decoder transfer function may
differ substantially.

The optimization of the shape of channel detector transfer
function 304 may be complicated by the fact that there may be
no analytical expression for the transfer function. Rather,
channel detector transfer function 304 may merely be repre-
sented by a (potentially large) number of points that lie on the
transfer function. Keeping track of this potentially large num-
ber of points may complicate the optimization process by
making it more computationally expensive and thereby
slower to carry out. In some aspects, the complexity of the
optimization procedure may be reduced by representing
channel detector transfer function 304 by a small number of
critical points. Generally, two or three such critical points
may suffice to carry out the optimization procedure. However,
it may be important that these two to three critical points be
selected judiciously. For example, the critical points may be
selected at locations for which the smallest difference
between channel detector transfer function 304 and ECC
decoder transfer function 302 is expected. Selecting a critical
point at such a location may further ensure that channel detec-
tor transfer function 304 and ECC decoder transfer function
304 do not cross, because if at all, the transfer functions would
be expected to cross at this location. Alternatively or addi-
tionally, critical points may be selected in a way that allows
control of the slope of channel detector transfer function 304.
At least two critical points may be needed to define the slope.
Further, critical points may be selected such that a shape of
channel detector transfer function 304 is fixed. For example,
three or more critical points may be used to ensure that chan-
nel detector transfer function 304 have a concave (e.g.,
“downward bending”) shape.

In addition or as an alternative to specifying critical points,
other optimization criteria may be employed to optimize the
shape of channel detector transfer function 304. For example,
the shape of channel detector transfer function 304 may be
determined such that a difference in area under the curves is
minimized. FIG. 4 shows an illustrative EXIT chart 400 of a
channel detector that has been fitted to the transfer function of
an ECC decoder, in accordance with some embodiments of
the present disclosure. Similar to EXIT chart 300 discussed in
relation to FIG. 3, EXIT chart 400 may include a channel
detector transfer function 404 and an ECC decoder transfer
function 402. EXIT chart 400 further depicts area 406, which
lies beneath channel detector transfer function 404 but above
ECC decoder transfer function 402. The size of arca 406 may
be selected as an optimization metric, and the shape of chan-
nel detector transfer function 404 may be optimized such that
the size of area 406 is minimized. On an intuitive level, it is
clear that minimizing the size of area 406 must lead to align-
ment of the shapes of channel detector transfer function 404
and ECC decoder transfer function 402. Alternatively, the
optimization procedure may also account for the speed of
iterative decoder convergence, for example, by considering a
fixed number of decoding iterations in iterative decoding
system 200.

FIG. 5 shows a process 500 for determining a Markov
distribution based on properties of a decoding system, in
accordance with some embodiments of the present disclo-
sure. Process 500 may start at 502 by selecting a Markov
memory length N. As discussed in relation to FIG. 2, the
Markov memory length may specify the length of bit
sequences for which Markov probabilities are defined.
Implicitly, the Markov memory length N also specifies the
number of probabilities values that are necessary to fully
define the Markov distribution. For example, for N=4, there
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exist 16 different bit sequences and therefore 16 Markov
probabilities are required to fully define the Markov distribu-
tion. Similarly, for N=6, there exist 64 different bit sequences
and therefore 64 Markov probabilities are required to fully
define the Markov distribution. It should be understood that
the parameter N not only impacts the complexity of the MD
code by increasing the number of Markov probabilities. As N
increases, so does the complexity of actual encoder and
decoder structures that approximate the Markov distribution.
Exemplary encoder and decoder implementations that
approximate a given Markov distribution (e.g., the Markov
distribution that is found as a result of the optimization pro-
cedure), will be discussed in relation to FIGS. 8-12 below. A
process for selecting the Markov memory length N will be
discussed in relation to FIG. 6.

Process 500, at 504, may determine an initial Markov
distribution MD,,, which is used as a starting point of the
optimization procedure. In some aspects, it is important to
appreciate that the selection of MD,, implicitly defines a code
rate associated with the MD code. In general, at lower code
rates, it may be easier to find MD codes that induce transfer
functions with smaller (e.g., less steep) slope. Such transfer
functions, because they are less steep, have higher output
information rates at low input information rates. This may be
taken into account in matching the shape of ECC decoder
transfer function 302, e.g., if transfer function 302 also has
such a property. Conversely, at higher MD code rates, it may
be easier to find MD codes that induce channel detector
transfer functions 302 with a large (e.g., steeper) slope. Such
transfer functions, because they are steeper, may be associ-
ated with lower output information rates at the low input
information rates and high output information rates at higher
input information rates. In some aspects, the steepness of the
curve may therefore be a design factor that enables a judicious
selection of MD,, based upon the slope of the ECC decoder
transfer function 302 for which channel detector transfer
function 304 is being optimized.

In some implementations, selecting MD, based on proper-
ties of the ECC decoder transfer function 302 may speed up
the optimization procedure. For example, in data storage
applications, user-bit density (UBD) may be a design consid-
eration. Generally, as UBD increases, the slope of the channel
decoder transfer function, for a fixed MD code, naturally
becomes steeper. This trend may be balanced by selecting a
lower MD code rate as the value of UBD increases.

At506, process 500 may update initial Markov distribution
MD,, or the Markov distribution of a previous iteration MD,,
to obtain an updated distribution MD,, ;. Updates to the
Markov distribution may be performed in various ways, such
as by increasing or decreasing one or more of the Markov
probabilities. In some aspects, it may not be necessary to
restrict the code rate that results from the updated Markov
distribution. In fact, placing no restrictions on the code rate of
the Markov distribution may allow the optimization proce-
dure to optimize both the Markov probabilities and the code
rate at the same time, and assuming that there are no physical
restrictions on the code rate, the iterative optimization proce-
dure should naturally converge to an optimal or close-to-
optimal code rate. In other embodiments, similar to finding an
initial Markov distribution at 504, updates to the Markov
distribution may take the Markov distribution’s code rate into
account. For example, in some applications a restriction may
be placed on the minimum code rate such as to limit the
amount of redundancy to a certain amount R. This amount R
may be shared between the ECC code and the MD code, but
since the ECC code (and thus the ECC code’s rate and redun-
dancy) may be assumed fixed as part of the optimization
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procedure, the maximum MD code redundancy (i.e., the
minimum MD code rate) may be known. It should be under-
stood that, if desirable, this constraint may easily be incorpo-
rated into the optimization procedure by restricting the set of
admissible code rates for the Markov distribution that is being
optimized. Code rates that fall outside of the admissible set of
code rates may be disallowed during the update step and may
therefore be prevented from occurring as the result of the
optimization procedure. In some implementations, the code
rate of the ECC code may not be assumed fixed, such as when
no satisfactory ECC code is known. In such a case, both the
MD code and the ECC code may be optimized jointly.

Process 500 may update the Markov probabilities by modi-
fying some, typically few, of the Markov probabilities. The
remaining Markov probabilities may need to be renormalized
as aresult of the modification. In one implementation, a single
one of the Markov probabilities may be updated. For
example, one of the Markov probabilities may be selected in
a random, semi-random, or deterministic fashion. The
selected Markov probability, say P ,may then be updated such
that P, ¢e")=p D4 AT where Al is selected from a suitable
range such as Ale[-x,x]. As a result of the modification of P,
the remaining Markov probabilities are then renormalized to
maintain a valid Markov distribution.

In some aspects, the direction of the change (e.g., whether
Al is positive or negative) may be selected randomly. The
direction may also be selected semi-randomly or semi-deter-
ministically. For example, the determination may be based on
the code rate. If it known that the code rate should be
increased, the probabilities may be modified in a direction
that leads to larger code rate (e.g., by selecting them to be
closeto 0.5). Conversely, if the code rate should be decreased,
the Markov probabilities may be changed such that they are
closer to 0 or 1, which in turn decreases the code rate.

In some embodiments, it may be desirable to enforce cer-
tain predefined constraints as part of the optimization proce-
dure. For example, it may be desirable to subject the Markov
probabilities to hard constraints, such as P,~0 or P =1 for a
certain index J. This may be beneficial if it must be ensured
that certain transitions are entirely prevented from occurring.
It should be noted that, when such a hard constraint is ben-
eficial for a certain decoding system, the optimization proce-
dure should automatically satisfy the constraint. However, if
it is known a priori that a certain constraint should be met, the
optimization procedure may converge more quickly by
enforcing the constraint explicitly.

In some embodiments, the modifications of the Markov
probabilities may need to be performed subject to strict code
rate constraints. For example, the MD code’s code rate may
need to be fixed at a predetermined value throughout the
optimization procedure. In such a case, updates to the Markov
probabilities may be performed such that the code rate
remains fixed at all times. For example, this may be ensured
by first modifying one of the Markov probabilities as dis-
cussed above and then modifying the remaining Markov
probabilities such that the code rate remains the same (e.g.,
using EQ. (1)).

At 508, process 500 may determine critical points in the
EXIT charts of channel detector 214 and ECC decoder 222.
For example, critical points may be determined in relation to
channel detector transfer function 304 and ECC decoder
transfer function 302, as discussed in relation to FIG. 3. In
some implementations, the determined critical points may
remain fixed throughout process 500. In other implementa-
tions, the critical points may be determined anew in each
iteration. For example, if the critical points are selected in
order to correspond to extreme points (e.g., maxima or

40

45

55

12

minima) of the channel detector transfer function, the critical
points may need to be determined in each iteration, because
the shape of the transfer function may change in each iteration
as the Markov distribution is updated.

It should be understood that channel detector transfer func-
tion 304 must lie above (e.g., must “clear”) ECC decoder
transfer function 302. Otherwise, if the transfer functions
crossed, an iterative decoding procedure would fail to con-
verge. In accordance with this observation, it may be desir-
ableto determine the critical points of the transtfer functions to
lie in the region where such a cross-over is anticipated to
occur.

In doing so, the distance of the channel detector and ECC
decoder transfer functions may be explicitly evaluated as part
of the optimization procedure and undesired cross-overs can
be avoided.

Generally, the distance between the channel detector and
ECC decoder transfer functions determines the speed of the
optimization procedure. If the distance between the transfer
functions is large, few iterations typically lead to conver-
gence, as is shown in relation to FIG. 3. On the other hand, if
the distance between the transfer functions is small, a larger
number of iterations may be required, because each iterations
improves the a posteriori information by only a small amount.

Process 500, at 510, may compare the updated Markov
distribution MD,, ; with the Markov distribution of the previ-
ous iteration, MD,. The comparison between the distributions
may be based on a performance metric M (*). This perfor-
mance metric may be defined in a number of ways. In one
example, the performance metric may be based on the values
ofthe channel detector transfer function 304 evaluated at the
determined critical points. In other implementations, the
transfer functions of the channel detector and ECC decoder
may be compared by other suitable metrics. In the following,
examples will be provided on how the transfer functions may
be compared based on one, two, or three critical points.

When the transfers functions of channel detector and ECC
decoder are compared based on a single critical point, the
Markov distribution with higher information rate at the cru-
cial point may be selected.

When the transfer functions of channel detector and ECC
decoder are compared based on two critical points, the
Markov distribution that better fits the shape of ECC decoder
transfer function 302 may be selected. In particular, process
500 may first verify that, at both points, the information rate
of the channel detector transfer functions is greater than the
respective value of the ECC decoder transfer function. If this
condition is not satisfied, the new Markov distribution may be
eliminated as it would prevent iterative decoding system 200
from converging. If the condition is satisfied, the updated
Markov distribution may be selected if the area between the
channel detector transfer function and the ECC decoder trans-
fer function (e.g., as illustrated in FIG. 4) is larger for the
updated Markov distribution than for the previous Markov
distribution.

When the transfer function of channel detector and ECC
decoder are compared based on three critical points, process
500 may also determine whether the updated Markov distri-
bution achieves a better fit with ECC decoder transfer func-
tion 302. First, process 500 may determine whether the infor-
mation rates of the updated Markov distribution, evaluated at
the critical points, exceed the information rates of ECC
decoder transfer function at these critical points. If this con-
dition is not satisfied, the updated Markov distribution may
fail to satisfy the convergence properties required for iterative
decoding system 200. If the condition is satisfied, process 500
may again compare the area difference between the transfer
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functions between the updated and previous Markov distri-
butions. The updated Markov distribution may be selected if
the area between the curves increases. For the case of three
critical points, it may be assumed that the channel detector
transfer function 302 is piecewise linear, in order to avoid
having to evaluate the transfer function at more than the three
critical points.

At 512, process 500 may determine whether the updated
Markov distribution is associated with a larger performance
metric than the previous Markov distribution.

If the updated Markov distribution is associated with a
smaller performance metric, then the updated Markov distri-
bution may be discarded and the previous Markov distribu-
tion may be retained. Process 500 may then resume at 506 by
performing a different update to the Markov distribution.
Conversely, if the updated Markov distribution is associated
with a larger performance metric, then process 500 may dis-
card the previous Markov distribution and retain the updated
Markov distribution as the optimal distribution obtained so
far. Process 500 may then resume at 506 by updating the
Markov distribution in the next iteration.

Process 500 may be repeated for a number of iterations
until a stopping criterion is satisfied (e.g., until some perfor-
mance metric reaches a threshold), or process 500 may be
carried out for a predefined number of iterations. Upon ter-
mination of the optimization procedure, the resulting Markov
distribution may be used in encoder/decoder implementa-
tions as will be described in relation to FIG. 8-12. In some
implementations, process 500 may be carried out multiple
times using different initial Markov distributions. Multiple
Markov distributions may be obtained as a result of these
optimizations, and among these the best may be selected for
implementation.

FIG. 6 shows a process 600 for determining an appropriate
memory length of a Markov distribution, in accordance with
some embodiments of the present disclosure. Process 600
may, at 602, select an initial Markov memory length, such as
N=2. Next, process 600 may carry out process 500 in order to
find an optimal Markov distributions for the current Markov
memory length N. The resulting optimal Markov distribution,
denoted MD,,, may then be used to compute a code rate as
well as information rates at a number of critical points of the
channel detector transfer function associated with MD .
The transfer function of MD,,, may then be compared with
the transfer function of a Markov distribution with a memory
length of N-1, e.g., MD,,,_,,. If the transfer function for this
Markov distribution is not available from a previous iteration,
process 500 may be carried out for the Markov distribution
with memory length N-1 in order to obtain a reference for
comparison. For N=1, the comparison between MD,, and
MD , may correspond to comparing MD,,, to the perfor-
mance without an MD code, because MD,;,y may be equiva-
lent to an MD code with rate r=1.

At 610, process 600 may determine whether the perfor-
mance of MD ., is sufficiently better than the performance of
MD,_,y. Process 600 may determine whether there is a suf-
ficient performance improvement by trading off the perfor-
mance gain with the increase of complexity that results from
an increased memory length. For example, if for a given code,
the performance gain between N=2 and N=3 is large, but the
performance gain between N=3 and N=4 is small, selecting
N=3 may correspond to a good tradeoft between performance
and complexity. At 612, process 600 may determine whether
a maximum tolerable complexity has been reached. The
maximum tolerable complexity increases with the memory
length N and depending on architecture constraints in terms
of size, complexity, power consumption, or other factors, an
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implementation may only be able to support Markov memory
lengths up to a certain point. If process 600 determines at 612
that the maximum memory length has been reached, process
600 may terminate at 616; otherwise, process 600 may
increase N by one and continue at 604.

FIG. 7 shows an illustrative EXIT chart 700 associated
with respective iterations of a Markov distribution code, in
accordance with some embodiments of the present disclo-
sure. Similar to EXIT charts 300 and 400, EXIT chart 700
includes an ECC decoder transfer function 702. EXIT chart
700 also includes three channel detector transfer functions
704, 706, and 708. Each of transfer functions 704, 706, and
708 corresponds to an iteration of process 500. For example,
channel detector transfer function 704 may correspond to the
channel detector transfer function associated with a Markov
distribution in the first iteration of process 500. Channel
detector transfer function 704 may be associated with unde-
sirable properties, such as a cross-over with ECC decoder
transfer function 702. As part of process 500, channel detec-
tor transfer function 704 may be improved to yield channel
detector transfer functions 706 and 708. As discussed in rela-
tionto FIG. 5, process 500 may rely on critical points to speed
up convergence. EXIT chart 700 illustrates a selection of such
critical points at 710, 712, and 714. FIG. 7 further illustrates
that critical points 710, 712, and 714 improve as part of the
optimization procedure, because the values of channel detec-
tor transfer functions 704-708 improve throughout process
500 at each of critical points 710-714.

In some embodiments, should process 500 not lead to a
satisfactory Markov distribution, a joint optimization of ECC
decoder transfer function 302 and channel detector transfer
function 304 may be performed. The joint optimization may
start by preselecting a good ECC code for the decoding sys-
tem (e.g., channel) of interest. Once the ECC code has been
selected, process 500 may be used to obtain an MD code and
corresponding channel detector transfer function 304. Next,
the ECC code may be optimized while the MD code remains
fixed, using a similar technique as in process 500. Finally, the
last steps are repeated several times until convergence of the
ECC code and MD code is reached.

Once a final Markov distribution has been obtained as a
result of the optimization procedure, encoder and decoder
implementations may be designed based on the target Markov
distribution. The encoder implementation may encode user
information 102 such that codeword 106 has a Markov dis-
tribution that is close to the target Markov distribution
obtained from the optimization procedure. In some embodi-
ments, the encoder implementation may be based on a set of
parameters that defines how the user information is trans-
formed into encoded data. For example, an MD encoder may
be constructed by enforcing that a weighted number of ones
does not exceed a certain threshold within a block of encoded
data.

FIG. 8 shows a bit sequence 800 to illustrate the definition
of a weighted number of ones, in accordance with some
embodiments of the present disclosure. Bit sequence 800 may
include a block of a Markov distribution code, such as block
802 which consist of L=12 binary entries. For block 802, the
weighted number of ones may be defined as
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For bit sequence 800, this weighted number of ones may be
determined as follows. Assuming a Markov memory length
of N=2, there exist a total of four different weights, viz. w(00),
w(01), w(10), and w(11). The weighted number of ones may
be determined by counting the occurrence of “00”, “01”,
“10”, and “11” patterns that precede a given “1” in the bit
sequence and multiplying the number of occurrences with the
respective weights. For example, for bit sequence 800, the
locations of ones in the sequence occur at locations 804a-
804g. The two-bit patterns that precede locations 804a-804g
are denoted as patterns 806a-806g in bit sequence 800. Spe-
cifically, the “00” bit pattern precedes a logical one twice (at
locations 804a and 8045), the “01” bit pattern precedes a
logical one once (at location 804f), the “10” pattern precedes
a logical one twice (at locations 804c¢ and 804¢) and the “11”
pattern precedes a logical one once (at location 804g).
Assuming exemplary weights ofi<00)=1, w(01)=2, w(10)=2,
and w(11)=3, the weighted number of ones is given by mul-
tiplying these occurrences with their respective weights, i.e.,

2xw(00)+2xw(10)+w(01)+w(11)=11.

The weighted number of ones may be used to construct a
trellis that can be used to approximate the MD code by using
enumerative coding techniques. However, in order to do so, it
necessary to define the weights w, the threshold P, and the
block length L. such that the values of these parameters cor-
respond to the target Markov distribution.

FIG. 9 illustrates a process 900 for choosing encoding
parameters based on a target Markov distribution, in accor-
dance with some embodiments of the present disclosure.
Process 900 may start at 902 by initializing the encoding
parameters L, P, and the weights w. In some embodiments, the
parameter . may be selected first. Generally, choosing a large
L results in a better approximation of the Markov distribution;
however, a large L also makes it more complex to implement
the encoder and the decoder. As a result, a practical imple-
mentation may need to strike a tradeoff between representing
the Markov distribution with sufficient accuracy and limiting
implementation complexity.

At 904, process 900 may estimate the Markov distribution
that corresponds to a specific set of parameters L, P, and w.
The Markov distribution may be estimated by randomly gen-
erating a block of binary data of length L. with zeros and ones
occurring with equal probability. For each of the blocks, the
weighted number of ones may be determined, as discussed in
relation to FIG. 8. If the weighted number of ones for a block
exceeds the threshold P, the block is discarded; otherwise, it is
retained. Upon generating a sufficiently large number of such
blocks, the retained blocks may used to determine the Markov
distribution by counting the number of transitions and thus
estimating the transition probabilities. As long as a sufficient
number of blocks have been used, the estimate of the Markov
distribution should be accurate.

At 906, process 900 may compare the estimated Markov
distribution with the target Markov distribution and adjust the
parameters P and w to better approximate the target distribu-
tion. The parameters P and w may be adjusted systematically
or in an ad-hoc fashion. In some implementations, increasing
the parameter P may increase all Markov probabilities,
because the higher threshold allows blocks with a larger
weighted number of ones to be included. Similarly, increas-
ing the weight of a specific Markov state (e.g., bit pattern
“00) may decrease the corresponding Markov probability
because the increased weight leads to a larger weighted num-
ber of ones of the data block and thereby tends to exclude the
data block.
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At 908, process 900 may determine whether the estimated
Markov distribution approximates the target Markov distri-
bution sufficiently well. If so, process 900 stops at 910; oth-
erwise, it continues with another iteration of estimating the
Markov probability and adjusting the parameter P and w. In
some embodiments, in addition to adjusting P and w, the
initial value of L. may need to be increased in order to achieve
a sufficiently accurate approximation of the target distribu-
tion. For example, the value of parameter [ may be increased
in response to determining that, despite having performed a
larger number of iterations at 904 and 906, the estimated
Markov distribution is still not sufficiently accurate.

In some embodiments, at least one of the Markov prob-
abilities of the target Markov distribution may be subjectto a
hard constraint, such as p,=0 or p/=1. In such a case, process
900 may take the at least one hard constraint into account at
904 when process 900 randomly generates data. Specifically,
instead of generating binary data with equal probabilities of
logical zeros and logical ones, the binary data may be gener-
ated using an encoder that account for the hard constraint.
This encoder may be designed based on principles of con-
strained encoding, max-entropic encoding, or any other suit-
able coding technique. Further, since hard constraints are
accounted for explicitly as part of generating binary data
blocks, their corresponding Markov probability may be set to
zero, and may not need to be used in process 900.

Based on the parameters P, w, and L, an encoding trellis
may be constructed. The encoding trellis may facilitate gen-
eration of data that is associated with the target Markov dis-
tribution, for example through enumerative encoding tech-
niques.

FIG. 10 shows transition diagrams 1000 and 1050 for a
Markov distribution code, in accordance with some embodi-
ments of the present disclosure. Transition diagram 1000
includes originating states 1002¢-10024 and target states
10044-1004/. Each state includes an indication of the previ-
ous two entries in the binary sequence as well as an integer
that corresponds to a current weighted number of ones. Tran-
sition diagram 1000 illustrates how these metrics are updated
from one entry in the binary sequence to the next. Transition
diagram 1000 assumes, for illustration, that w(00)=1,
w(01)=2, w(10)=3, and w(11)=4.

For each of originating states 1002a-1002d, the next bit in
the binary sequence may either be a logical zero or a logical
one, i.e., for each of the originating states, there are two
possible transitions, one corresponding to the next entry
being a logical one, and the other corresponding to the next
entry being a logical zero. For each state, the indication of the
previous two binary entries may be updated by dropping the
oldest entry and adding the entry of the binary sequence ofthe
current transition. For example, for state 10024 (correspond-
ing to “00” and a value of v) and “1” as the next entry in the
sequence, the target state 10044 corresponds to “01” and a
value of v+1 (due to w(00)=1). Similarly, for state 10025
(corresponding to (“10” and a value of v) and “1” as the next
entry in the binary sequence, the target state 100454 corre-
sponds to “01” and a value of v+3 (due to w(10)=3). It is
important to realize that, in accordance with the definition of
the weighted number of ones, the value v may only be updated
if the next entry in the binary sequence is a logical one.
Otherwise, the value v of a target state may be identical to the
value v of the originating state; in that case only the indication
of the previous two entries of the binary sequence may be
updated.

Transition diagram 1050 illustrates a modification to tran-
sition diagram 1000 to account for a hard constraint in the
target Markov distribution. Transition diagram 1050, similar
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to transition diagram 1000, includes originating states 1052a-
10524 as well as target states 1054a-1054g. However, differ-
ent from transition diagram 1000, originating state 1052q is
associated with a hard constraint, e.g., because whenever
“11” appears in the binary sequence, the following entry must
necessarily be a logical zero. As a result of this hard con-
straint, originating state 10524 does not include a transition
corresponding to the next entry in the binary sequence being
“1.” In contrast, starting from originating state 1052a, the
target state must necessarily be target state 1054e. As illus-
trated by transition diagram 1050, such a hard constraint may
be accounted for by removing disallowed transition (e.g.,
transitions that would occur with zero probability).

FIG. 11 shows a trellis 1100 for a Markov distribution
code, in accordance with some embodiments of the present
disclosure. Trellis 1100 includes L stages of states, wherein
each stage reflects a position in the binary sequence of length
L. In some aspects, trellis 1100 may be obtained by concat-
enating transition diagrams 1000 or 1050 and by accounting
for all possible state transitions. Trellis 1100 illustrates how to
perform this concatenation. Similar to transition diagrams
1000 and 1050, trellis 1100 assumes that w(00)=1, w(01)=2,
w(10)=3, and w(11)=4.

A first stage of trellis 1100 may include states 1102a-
11024. Similar to states 1002 and 1052, each state may be
associated with an indication of the previous two entries in the
binary sequence and a current value v reflecting the weighted
number of ones up to the current state. Because states 1102-
11024 all correspond to the first stage in trellis 1100, they are
all associated with a value v=0. For states 1102, the indication
of'the previous two entries in the binary sequence correspond
to entries that occur just before the current block, as is illus-
trated in relation to FIG. 8. Depending on the first entry in the
binary sequence within the current block, transitions may
occur from states 1102 to states 1104a-f (generally states
1104). The values v are updated in the same fashion as in
transition diagrams 1000 and 1050. The number of states
needed to account for all possible sequences may depend on
the specific values of weights w and the presence of absence
of any hard constraint. For example, for trellis 1100, six states
(e.g., states 1104) are sufficient to capture all outcomes at the
second stage.

Trellis 1100 includes a third stage including states 1106a-
1106% (generally states 1106). States 1106 are obtained by
applying the rules discussed in relation to transition diagrams
1000 and 1050 to states 1104. For the specific example illus-
trated by trellis 1100, a total of 11 states may be needed to
capture all possible binary sequences that may occur. Trellis
1100 may include a total of L. stages, and generally the num-
ber of states required to account for all possible sequences
grows with each stage. For example, the last stage [.-1 may
include states 1108a-1108% (generally states 1108). It is
important to note that as part of trellis 1100 only states with a
value of at most P are required. Any transition that would lead
to a target state with a value v that exceeds the threshold P
need not be included, because such a sequence does not
satisfy the constraints of process 900. Trellis 1100 shows an
exemplary case in which threshold P is reached by states
11084-1108d.

In some embodiments, trellis 1100 may be simplified by
merging states that share a common weight and either have
the same hard constraint or no hard constraint at all. An
exemplary method for simplifying the trellis is discussed in
FIG. 12.

FIG. 12 shows a simplified transition diagram 1200
obtained by merging states with similar properties, in accor-
dance with some embodiments of the present disclosure.

10

15

20

25

30

35

40

45

50

55

60

65

18

Transition diagram 1200 includes two stages. The first stage
may include states 1202a-1202¢ and the second stage may
include states 1204a-e. Different from transition diagrams
1000 and 1050, transition diagram 1200 may be based on
weights w(00)=1, w(01)=2, w(10)=1, and w(11)=4. Since
w(00)=w(10), states 1202¢ and 1204¢ need not account for
the two previous entries in the binary sequence but rather just
the last entry in the binary sequence. This is denoted by an
“X” in states 1202¢ and 1204e. As a result of merging the
separate states “00” and “10” into a single state “XO0,” it is
possible to reduce the state space of transition diagram 1200.
A trellis based on transition diagram 1200 could thus be
stored more cost effectively.

In some embodiments, after obtaining values for w, P, and
L from the target Markov distribution, a trellis may be con-
structed by accounting for all possible transitions that could
occur in the binary sequence of length L. After a trellis (e.g.,
trellis 1100) is constructed, an encoder may be designed
based on enumerative coding techniques. In some aspects,
such enumerative encoding is based on a look-up table whose
size depends on the size of the trellis. The simplifications
provided by merging states as shown in trellis 1200 therefore
lead to a compressed size of the look-up table and may make
animplementation of the enumerative encoder more manage-
able.

In some aspects, systems and methods for implementing
the enumerative encoder are discussed in U.S. patent appli-
cation Ser. No. 12/110,921 (now U.S. Pat. No. 7,667,626),
filed on Apr. 28, 2008 and entitled “ENUMERATIVE DC-
RLL CONSTRAINED CODING”, which is hereby incorpo-
rated by reference herein in its entirety.

FIG. 13 is a block diagram 1300 of a computing device,
such as any of the components of the system of FIG. 1, for
performing any of the processes described herein, in accor-
dance with an embodiment of the disclosure. Each of the
components of these systems may be implemented on one or
more computing devices 1300. In certain aspects, a plurality
of the components of these systems may be included within
one computing device 1300. In certain embodiments, a com-
ponent and a storage device 1311 may be implemented across
several computing devices 1300.

The computing device 1300 comprises at least one com-
munications interface unit 1308, an input/output controller
1310, system memory 1303, and one or more data storage
devices 1311. The system memory 1303 includes at least one
random access memory (RAM 1302) and at least one read-
only memory (ROM 1304). All of these elements are in com-
munication with a central processing unit (CPU 1306) to
facilitate the operation of the computing device 1300. The
computing device 1300 may be configured in many different
ways. For example, the computing device 1300 may be a
conventional standalone computer or, alternatively, the func-
tions of computing device 1300 may be distributed across
multiple computer systems and architectures. In FIG. 13, the
computing device 1300 is linked, via network 1318 or local
network, to other servers or systems.

The computing device 1300 may be configured in a dis-
tributed architecture, wherein databases and processors are
housed in separate units or locations.

Some units perform primary processing functions and con-
tain at a minimum a general controller or a processor and a
system memory 1303. In distributed architecture embodi-
ments, each of these units may be attached via the communi-
cations interface unit 1308 to a communications hub or port
(not shown) that serves as a primary communication link with
other servers, client or user computers and other related
devices. The communications hub or port may have minimal
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processing capability itself, serving primarily as a communi-
cations router. A variety of communications protocols may be
part of the system, including, but not limited to Ethernet, SAP,
SAS™, ATP, BLUETOOTH™, GSM and TCP/IP.

The CPU 1306 comprises a processor, such as one or more
conventional microprocessors and one or more supplemen-
tary co-processors such as math co-processors for offloading
workload from the CPU 1306. The CPU 1306 is in commu-
nication with the communications interface unit 1308 and the
input/output controller 1310, through which the CPU 1306
communicates with other devices such as other servers, user
terminals, or devices. The communications interface unit
1308 and the input/output controller 1310 may include mul-
tiple communication channels for simultaneous communica-
tion with, for example, other processors, servers or client
terminals.

The CPU 1306 is also in communication with the data
storage device 1311. The data storage device 1311 may com-
prise an appropriate combination of magnetic, optical or
semiconductor memory, and may include, for example, RAM
1302, ROM 1304, a flash drive, an optical disc such as a
compact disc or a hard disk or drive. The CPU 1306 and the
data storage device 1311 each may be, for example, located
entirely within a single computer or other computing device,
or connected to each other by a communication medium, such
as a USB port, serial port cable, a coaxial cable, an Ethernet
cable, a telephone line, a radio frequency transceiver or other
similar wireless or wired medium or combination of the fore-
going. For example, the CPU 1306 may be connected to the
data storage device 1311 via the communications interface
unit 1308. The CPU 1306 may be configured to perform one
or more particular processing functions.

The data storage device 1311 may store, for example, (i) an
operating system 1312 for the computing device 500; (ii) one
or more applications 1314 (e.g., computer program code or a
computer program product) adapted to direct the CPU 1306
in accordance with the systems and methods described here,
and particularly in accordance with the processes described in
detail with regard to the CPU 1306; or (iii) database(s) 1316
adapted to store information that may be utilized to store
information required by the program.

The operating system 1312 and applications 1314 may be
stored, for example, in a compressed, an uncompiled and an
encrypted format, and may include computer program code.
The instructions of the program may be read into a main
memory of the processor from a computer-readable medium
other than the data storage device 1311, such as from the
ROM 1304 or from the RAM 1302. While execution of
sequences of instructions in the program causes the CPU
1306 to perform the process steps described herein, hard-
wired circuitry may be used in place of, or in combination
with, software instructions for embodiment of the processes
of the present disclosure. Thus, the systems and methods
described are not limited to any specific combination of hard-
ware and software.

Suitable computer program code may be provided for per-
forming one or more functions in relation to determining a
decoding order of a SIC receiver as described herein. The
program also may include program elements such as an oper-
ating system 1312, a database management system and
“device drivers” that allow the processor to interface with
computer peripheral devices (e.g., a video display, a key-
board, a computer mouse, etc.) via the input/output controller
1310.

The term “computer-readable medium” as used herein
refers to any non-transitory medium that provides or partici-
pates in providing instructions to the processor of the com-
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puting device 1300 (or any other processor of a device
described herein) for execution. Such a medium may take
many forms, including, but not limited to, non-volatile media
and volatile media. Non-volatile media include, for example,
optical, magnetic, or opto-magnetic disks, or integrated cir-
cuit memory, such as flash memory. Volatile media include
dynamic random access memory (DRAM), which typically
constitutes the main memory. Common forms of computer-
readable media include, for example, a floppy disk, a flexible
disk, hard disk, magnetic tape, any other magnetic medium, a
CD-ROM, DVD, any other optical medium, punch cards,
paper tape, any other physical medium with patterns of holes,
a RAM, a PROM, an EPROM or EEPROM (electronically
erasable programmable read-only memory), a FLASH-EE-
PROM, any other memory chip or cartridge, or any other
non-transitory medium from which a computer may read.

Various forms of computer-readable media may be
involved in carrying one or more sequences of one or more
instructions to the CPU 1306 (or any other processor of a
device described herein) for execution. For example, the
instructions may initially be borne on a magnetic disk of a
remote computer (not shown). The remote computer may
load the instructions into its dynamic memory and send the
instructions over an Ethernet connection, cable line, or even
telephone line using a modem. A communications device
local to a computing device 1300 (e.g., a server) may receive
the data on the respective communications line and place the
data on a system bus for the processor. The system bus carries
the data to main memory, from which the processor retrieves
and executes the instructions. The instructions received by
main memory may optionally be stored in memory either
before or after execution by the processor. In addition,
instructions may be received via a communication port as
electrical, electromagnetic or optical signals, which are
exemplary forms of wireless communications or data streams
that carry various types of information.

While various embodiments of the present disclosure have
been shown and described herein, it will be obvious to those
skilled in the art that such embodiments are provided by way
of example only. Numerous variations, changes, and substi-
tutions will now occur to those skilled in the art without
departing from the disclosure. It should be understood that
various alternatives to the embodiments of the disclosure
described herein may be employed in practicing the disclo-
sure. It is intended that the following claims define the scope
of the disclosure and that methods and structures within the
scope of these claims and their equivalents be covered
thereby.

The foregoing is merely illustrative of the principles of this
disclosure and various modifications can be made without
departing from the scope of the present disclosure. The above
described embodiments of the present disclosure are pre-
sented for purposes of illustration and not of limitation, and
the present disclosure is limited only by the claims which
follow.

What is claimed is:

1. A method for encoding information using a code speci-
fied by a target Markov distribution, the method comprising:

selecting a set of parameters comprising a block length, a

plurality of weight metrics, and a threshold;

estimating a Markov distribution associated with the

selected set of parameters from a plurality of data blocks
defined by the selected parameters;

modifying the set of parameters based on the estimated

Markov distribution; and

encoding the information using the modified set of param-

eters.
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2. The method of claim 1, further comprising:

determining the set of parameters iteratively by repeatedly

estimating a Markov distribution associated with the
modified set of parameters and modifying the set of
parameters based on the estimated Markov distribution.

3. The method of claim 1, wherein encoding the informa-
tion using the modified set of parameters comprises:

generating a trellis having a plurality of states based on the

modified set of parameters; and

encoding the information using an enumerative code deter-

mined from the trellis.

4. The method of claim 3, wherein the enumerative code
comprises a look-up table, the method further comprising:

compressing the look-up table to reduce an amount of

storage associated with the look-up table.

5. The method of claim 3, wherein generating the trellis
comprises:

combining a subset of the plurality of states with similar

characteristics.

6. The method of claim 1, wherein modifying the set of
parameters based on the estimated Markov distribution com-
prises:

modifying the set of parameters to approximate the target

Markov distribution.

7. The method of claim 1, wherein the target Markov dis-
tribution is specified by a plurality of probabilities, and at
least one of the plurality of probabilities corresponds to a hard
constraint, the method further comprising:

generating the plurality of data blocks such that each of the

plurality of data blocks satisfies the hard constraint.

8. A system for encoding information using a code speci-
fied by a target Markov distribution, the system comprising:

storage circuitry configured to store a set of parameters

comprising a block length, a plurality of weight metrics,
and a threshold; and

control circuitry configured to:

estimate a Markov distribution associated with the
selected set of parameters from a plurality of data
blocks defined by the selected parameters;

modify the set of parameters based on the estimated
Markov distribution, and

encode the information using the modified set of param-
eters.

9. The system of claim 8, wherein the control circuitry is
further configured to:

determine the set of parameters iteratively by repeatedly

estimating a Markov distribution associated with the
modified set of parameters and modifying the set of
parameters based on the estimated Markov distribution.

10. The system of claim 8, wherein the control circuitry
encodes the information using the modified set of parameters
by being further configured to:

generate a trellis having a plurality of states based on the

modified set of parameters; and

encode the information using an enumerative code deter-

mined from the trellis.

11. The system of claim 10, wherein the enumerative code
comprises a look-up table, and the control circuitry is further
configured to:

compress the look-up table to reduce an amount of storage

associated with the look-up table.
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12. The system of claim 10, wherein the control circuitry is
further configured to generate the trellis by being configured
to:

combining a subset of the plurality of states with similar
characteristics.

13. The system of claim 8, wherein moditying the set of
parameters based on the estimated Markov distribution com-
prises modifying the set of parameters to approximate the
target Markov distribution.

14. The system of claim 8, wherein the target Markov
distribution is specified by a plurality of probabilities, at least
one of the plurality of probabilities corresponds to a hard
constraint, and the control circuitry is further configured to:

generate the plurality of data blocks such that each of the
plurality of data blocks satisfies the hard constraint.

15. A method for determining a Markov distribution code
for use in a decoding system, the method comprising:

modifying, using control circuitry, at least one probability
value of a first Markov distribution to obtain a second
Markov distribution;

computing a performance metric for a code specified by the
second Markov distribution based on properties of the
decoding system;

comparing the performance metric of the code specified by
the second Markov distribution with a performance met-
ric of a code specified by the first Markov distribution;
and

replacing the first Markov distribution with the second
Markov distribution when the performance metric of the
code specified by the second Markov distribution
exceeds the performance metric of the code specified by
the first Markov distribution.

16. The method of claim 15, further comprising:

repeating the modifying, the computing, the comparing,
and the replacing until a convergence criterion is satis-
fied.

17. The method of claim 15, wherein the performance
metric corresponds to one or more values of an extrinsic
information transfer function.

18. The method of claim 15, wherein the performance
metric is associated with a shape of an extrinsic information
transfer function.

19. The method of claim 15, wherein the first Markov
distribution is associated with a code rate, and modifying the
at least one probability value comprises:

modifying the at least one probability value such that a
code rate of the second Markov distribution remains
equal to the code rate associated with the first Markov
distribution.

20. The method of claim 17, wherein the extrinsic infor-
mation transfer function is a first extrinsic information trans-
fer function, and the method further comprises:

selecting the one or more values to optimize a shape of the
first extrinsic information transfer function in relation to
a second extrinsic information transfer function.
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